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Abstract ASDP is an automated NMR NOE assignment

program. It uses a distinct bottom-up topology-constrained

network anchoring approach for NOE interpretation, with

2D, 3D and/or 4D NOESY peak lists and resonance

assignments as input, and generates unambiguous NOE

constraints for iterative structure calculations. ASDP is

designed to function interactively with various structure

determination programs that use distance restraints to

generate molecular models. In the CASD–NMR project,

ASDP was tested and further developed using blinded

NMR data, including resonance assignments, either raw or

manually-curated (refined) NOESY peak list data, and in

some cases 15N–1H residual dipolar coupling data. In these

blinded tests, in which the reference structure was not

available until after structures were generated, the fully-

automated ASDP program performed very well on all tar-

gets using both the raw and refined NOESY peak list data.

Improvements of ASDP relative to its predecessor program

for automated NOESY peak assignments, AutoStructure,

were driven by challenges provided by these CASD–NMR

data. These algorithmic improvements include (1) using a

global metric of structural accuracy, the discriminating

power score, for guiding model selection during the

iterative NOE interpretation process, and (2) identifying

incorrect NOESY cross peak assignments caused by errors

in the NMR resonance assignment list. These improve-

ments provide a more robust automated NOESY analysis

program, ASDP, with the unique capability of being uti-

lized with alternative structure generation and refinement

programs including CYANA, CNS, and/or Rosetta.

Keywords AutoStructure � ASDP � Automated structural

determination by NMR � CYANA � CNS � Rosetta

Introduction

Automated NOESY peak assignment is a fundamental

component of protein NMR structure determination. Sev-

eral successful programs for interpreting NOESY peak lists

together with resonance assignments are available (Her-

rmann et al. 2002; Huang et al. 2006; Lee et al. 2011;

Nilges 1995; Nilges et al. 1997). The AutoStructure pro-

gram (Huang et al. 2006) uses a distinct bottom-up topol-

ogy-constrained network anchoring approach for NOE

interpretation, with 2D, 3D and/or 4D NOESY peak lists

and resonance assignments as input. The program gener-

ates unambiguous NOE constraints for iterative structure

calculations. It is designed to function interactively with

various structure determination programs that use distance

restraints to generate molecular models, including CYANA

(Guntert et al. 1997; Herrmann et al. 2002), CNS (Brunger

et al. 1998), and/or distance-restrained Rosetta (Lange

et al. 2012; Mao et al. 2014; Raman et al. 2010b; Tejero

et al. 2013). AutoStructure has been used for structure

determination of more than 370 proteins deposited in the

PDB.
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In the course of developing AutoStructure, we have also

explored a simple metric useful for assessing the accuracy

of protein NMR structure models. The RPF–DP score

(Huang et al. 2005, 2012) provides a simple approach to

compare the short interproton distances in a protein struc-

ture model with the network of all potential NOESY cross

peak assignments indicated by NOESY peak list and

chemical shift resonance assignments. Analysis using

NMR—X-ray pairs, and/or comparisons of decoys gener-

ated with various methods with manually-refined NMR

structures, demonstrate that RPF–DP scores are highly

correlated with structural accuracy (Huang et al. 2012; Mao

et al. 2014; Rosato et al. 2012). The DP scores of Rosetta

decoys have also been used together with chemical shift

data to direct CS-Rosetta calculations, improving the

accuracy of models generated from incomplete, sparse

NMR data sets (Raman et al. 2010a, 2010b).

CASD–NMR (Critical Assessment of automated

Structure Determination of Proteins from NMR data, www.

e-nmr.eu/CASD–NMR), is a community-wide project

designed to verify whether unsupervised automated NMR

analysis methods can indeed produce structures that clo-

sely match those that are refined by manual analysis using

the same experimental data (the ‘‘reference structures’’)

(Rosato et al. 2012, 2009). The concept closely resembles

community-wide structure prediction experiments, such as

CASP (Moult et al. 1995) and Critical Assessment of

PRediction of Interactions (CAPRI) (Janin et al. 2003).

However, CASD–NMR utilizes experimental NMR data,

presenting special issues in organizing and distributing

these data among participants. CASD–NMR is a rolling

experiment in which test data sets are released regularly

during the course of the experiment. Software developers

are invited to test their fully automated protocols on blind

data sets and produce structures as if they would directly

deposit them into the PDB. The current cycle of CASD–

NMR was designed specifically to explore the robustness

of automated NOESY resonance assignment programs

when provided with ‘‘raw’’, automatically peak-picked

NOESY data, together with largely correct resonance

assignment data.

In this paper we describe application of an improved pro-

gram for automated NOESY peak assignments and restraint

generation, ASDP, based on AutoStructure. ASDP was further

developed and tested on blinded protein targets of the CASD–

NMR experiment. ASDP utilizes the NMR DP score, com-

paring how well a protein model fits to the experimental

NOESY peak list and chemical shift data, to direct the NOESY

cross-peak assignment trajectory. Intermediate structures are

assessed with the DP metric, and those above a threshold are

excluded from use in ruling-in and ruling-out candidate

NOESY crosspeak assignments. We have also developed an

approach for identifying incorrect NOESY cross peak assign-

ments caused by inaccuracies in the resonance assignment list.

These enhancements improve the accuracy of NOESY cross

peak assignments and of the resulting final NMR structures.

Materials and methods

The blinded datasets

ASDP was applied for blind structure determination using

20 different NOESY peak list and chemical shift assign-

ment datasets for ten protein targets (Table 1). For each

dataset, both raw and refined peak lists were provided by

the CASD–NMR-2013 organizers. Raw NOESY peak lists

were released first. After all structure generation results

using these raw NOESY peak lists were submitted to the

CASD–NMR site, manually-refined NOESY peak lists

were subsequently released as a second test data set. Some

of these CASD–NMR targets also had backbone15N–1H

residual dipolar coupling (RDC) data, which were released

together with the NOESY peak lists and resonance

assignments lists. The last two columns of Table 1 sum-

marize whether 15N–1H RDC data were also used in the

ASDP calculations listed in Table 2 along with the raw

unrefined peak lists and the manually-refined peak lists.

Table 1 Statistics on the

CASD–NMR benchmark

datasets

Name PDB Residues RMSD ranges Fold RDCraw RDCrefine

HR2876B 2LTM 107 11–107 Alpha ? beta Yes Yes

HR2876C 2M5O 97 16–93 Alpha ? beta Yes Yes

HR5460A 2LAH 160 12–28, 32–159 Alpha No Yes

HR6430A 2LA6 99 12–99 Alpha ? beta No No

HR6470A 2L9R 59 10–59 Alpha No Yes

HR8254A 2M2E 72 553–612 Alpha No No

OR135 2LN3 83 3–76 Alpha ? beta Yes Yes

OR36 2LCI 134 1–48, 50–129 Alpha ? beta No Yes

StT322 2LOJ 63 26–63 Alpha ? beta No No

YR313A 2LTL 119 16–43, 45–112, 114–116 Alpha ? beta Yes Yes
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RPF/DP

RPF/DP is a quality assessment tool for protein NMR

structures (Huang et al. 2005, 2012). The algorithms to

calculate RPF scores (i.e. Recall, Precision, F-measure)

and the DP-score are described elsewhere (Huang et al.

2005). Briefly, Recall measures the percentage of input

NOESY peaks that can be explained by the input query

structure(s) with a distance cut-off B5 Å. Precision mea-

sures the percentage of 1H–1H distances B5 Å calculated

from the query structure that are observed in the NOESY

data. F-measure combines the Recall and Precision scores,

and estimates how well the input NMR structure ensemble

fits with the input NMR data. DP score is a normalized

score of F-measure, which estimates the significance of the

F-measure score for the query structure relative to what

would be obtained for a random-coil structure fit to the

same experimental data. The DP-score is an accuracy

predictor of the query structure relative to the NOESY and

chemical shift data, ranging from 0 to 1. The RPF/DP also

maps the local structure quality measures onto the 3D

structure using an online molecular viewer, and onto the

NMR spectra, allowing refinement of the structure and/or

NOESY peak list data. In summery, the RPF/DP measures

the ‘goodness-of-fit’ of the 3D structure with NMR

chemical shift and unassigned NOESY data, and calculates

a discrimination power (DP) score, which estimates the

differences between the fits of the query structures and

random coil structures to these experimental data.

Structure determination with ASDP

ASDP, the newest version of AutoStructure (Huang et al.

2006), utilizes (1) a topology-based algorithm to build

secondary structures, including helices, anti-parallel beta-

sheets and parallel beta-sheets, from unassigned NOE data

and resonance assignments in the first cycle, and (2) a

bottom-up iterative strategy, beginning from these sec-

ondary structure elements, to assign additional NOESY

peaks and generate distance restraints. Ambiguous restraint

approaches are not used in ASDP analysis. The key feature

distinguishing ASDP from its predecessor AutoStructure is

the use of the DP score (Huang et al. 2005, 2012) to rank

and filter intermediate structures that are used to direct the

trajectory of NOESY cross peak assignment process.

Dihedral angle restraints for ASDP are generated from

backbone chemical shift data using TALOS? (Shen et al.

2009). Only the dihedral angles classified as ‘good’ by

TALOS? (reliability score = 10) were used as restraints.

The ranges of these dihedral angles were set to their pre-

dicted value ±20� or to twice the standard deviation,

whichever was larger. 100 structures were then calculated

with the structure generation components of the CYANA

program, using distance, dihedral angle, and hydrogen bond

restraints provided by the ASDP, together with RDC data

when available. Among these 100 structures, the 20 struc-

tures with the best combined DP and CYANA target function

scores [i.e. (target function/weight)-(DP score), where

weight = min (target function of 100 models) 9 100], were

selected and used to rule-in and rule-out potential NOESY

cross peaks assignments. This process was carried out for

five cycles of NOE analysis. TALOS ? dihedral angle

restraints violated in all 20 models were removed, and the

ASDP process was repeated. Only one iteration of this

overall ASDP protocol is performed to avoid potential over-

fitting. All ASDP/CYANA calculations were distributed on

50 cpu processors. Each structure calculation required only

minutes to complete. The resulting ensemble of 20 con-

formers were then energy-refined with the WaterRefCNS

protocol (Brunger et al. 1998) with slow cooling steps

(tsc) = 0.001 and RDC weight (wrdc1) = 0.2 when appli-

cable (for a detailed protocol see http://www.nmr2.buffalo.

edu/nesg.wiki/), or refined with using distance-restrained

Rosetta calculations (Mao et al. 2014).

Table 2 Blinded ASDP

performance on the 10 CASD

benchmark datasets for raw and

refined peak lists

Name Raw Refined

Energy refine DP \DP[ RMSD (Å) Energy refine DP \DP[ RMSD (Å)

HR2876B Rosetta 0.798 0.787 1.32 Rosetta 0.923 0.903 1.23

HR2876C Rosetta 0.682 0.652 1.78 Rosetta 0.891 0.857 0.99

HR5460A CNS 0.741 0.676 1.74 CNS 0.853 0.808 1.70

HR6430A CNS 0.853 0.820 1.38 CNS 0.905 0.863 1.41

HR6470A CNS 0.835 0.777 1.34 CNS 0.889 0.760 1.12

HR8254A Rosetta 0.790 0.690 1.94 Rosetta 0.798 0.735 2.17

OR135 Rosetta 0.764 0.745 1.13 Rosetta 0.893 0.877 0.97

OR36 CNS 0.766 0.715 1.45 CNS 0.903 0.830 1.61

StT322 Rosetta 0.635 0.490 1.46 Rosetta 0.771 0.656 1.45

YR313A Rosetta 0.650 0.590 1.39 Rosetta 0.818 0.700 1.77
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Distance-restrained Rosetta calculations

Restrained Rosetta refinement was done using protocols

presented elsewhere (Mao et al. 2014; Tejero et al. 2013).

Restraints were converted from CYANA to Rosetta format

using the PDBStat program (Tejero et al. 2013). Calcula-

tions were done using Rosetta Ver 3.X. Input includes PDB

coordinates, chemical shifts, and restraint lists. Fragment

libraries for the restrained Rosetta calculations were gen-

erated without considerations of chemical shift data.

Automatic residue disorder filter for unrefined raw

peak lists

Long segments of residues predicted to be disordered were

identified by using a disorder prediction server, DisMeta

(Huang et al. 2014), which is based on a consensus analysis

of eight disorder prediction and two secondary structure

prediction methods. Potential long-range NOE assignments

involving disordered residues are excluded from the

structure calculations. For StT322, the first 27 residues

were predicted to be disordered by DisMeta (Huang et al.

2014).

Automatic noise filter for unrefined raw NOESY

peak lists (‘‘ASDP filter’’)

The following protocol was applied automatically to filter

out noise peaks from the unrefined raw NOESY peak lists:

Step 1 Initial noise peaks were first filtered out from the

raw NOESY peak list using preprocessing scripts of ASDP

which removed (1) peaks with negative intensities; (2)

peaks with no matches against the chemical shift table; (3)

possible peaks due to solvent saturation transfer or

incomplete solvent suppression in the chemical shift range

between 4.4 and 5.2 ppm in the indirect 1H dimension.

Step 2 Run ASDP.

Step 3 Check the DP scores from the ASDP run and

identify a ‘‘peak intensity cutoff’’ for further peak filtering.

This process was done differently depending on the accu-

racy of the models as assessed by the DP score.

CASE A: DP score from step 2[ 0.6

These decoy structures are considered to be reasonably

accurate. NOESY peaks were separated into symmetry and

non-symmetry classes; symmetry NOESY peaks are pairs

of NOESY peaks that are symmetric in the NOESY

spectrum, and non-symmetry peaks cannot be confirmed by

identification of a symmetric NOESY peak partner. For

each of these two groups, the NOESY peaks were sorted

based on peak intensities and then equally distributed into

20 equal size bins (i.e. C0, C5, C10,… C95 % of all

peaks). In this notation, the ‘‘C20 % bin’’ means removing

20 % of peaks with lowest intensities. In each bin, scripts

were used to identify false negative (FN) and true positive

(TP) peaks, using the RPF recall analysis (Huang et al.

2005); i.e. FN peaks are peaks in the NOESY peak lists

which are not satisfied by any structure in the ensemble

considering all possible assignments to the peak consistent

with the chemical shift assignment list. The FN and TP

peaks in each bin were then used to define a ‘‘peak intensity

cutoff’’. The peak intensity cutoff was defined as the

highest bin with FN/TP ratio [1. The optimum peak

intensity cutoffs were different for different NOESY peak

lists, and also different for the class of peaks that could be

validated by identifying a symmetric peak in the NOESY

spectrum. The intensity cut offs for non-symmetric peaks

typically ranged from C20 (i.e. the 20 % of peaks with

lowest intensity were removed) to C40 % (i.e. the 40 % of

peaks with lowest intensity were removed). For symmetric

peaks in these same NOESY peak lists, cutoff thresholds

were typically C5 or C10 % of peaks; for some data sets

the algorithm identified an intensity cutoff of C0 % (i.e. no

NOESY peaks were removed). For the raw NOESY data

sets of targets HR6430A and HR6470A, none of the raw

NOESY peaks were filtered out by this algorithm.

CASE B: DP score from step 2\ 0.6

In this case the ‘‘peak intensity cutoff’’ was set to C10,

C15, C20,…, C80 % of the total number of peaks (15

bins), sorted again based on NOESY peak intensity. For

each bin, we excluded all peaks with intensities below the

peak intensity cutoff, ran ASDP, and calculated DP scores

for the resulting structures. The ‘‘peak intensity cutoff’’

was defined as the bin value generating the highest DP

score for the resulting ensemble of NMR models among

the 15 bins. Among the ten CASD–NMR targets, only

HR8254A and StT322 NOESY peak lists were filtered

using the CASE B protocol. The peak intensity cutoffs

were C70 % for HR8254A and C35 % for StT322; i.e. the

70 % lowest intensity peaks of HR8254A and the 35 %

lowest intensity peaks of StT322 were identified as

potential noise peaks by this approach.

A DP score\0.6 indicates that the model does not fit the

data, and the resulting structures are not recommended for

use in guiding the peak picking process. However, for both

targets HR8254A and StT322 that were processed using the

peak filtering protocol CASE B, we also tested the CASE A

method. The noise/signal (FN/TP) ratios were[1 for all of

the peak intensity cutoff bins. For these NOESY peak lists,

no ‘‘peak intensity cutoff’’ can be identified using the

CASE A method.
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Step 4 All NOESY peaks with intensities below the peak

intensity cutoff were removed. The resulting NOESY peak

lists were then used for the final ASDP calculations.

RMSD calculations

Backbone (defined as N, Ca, C’, and O atoms) Root Mean

Square Deviations (RMSDs) were computed using the fit

command as implemented in the PyMol software (The

PyMOL Molecular Graphics System, Version 1.7.4

Schrödinger, LLC.). The residue ranges used for RMSD

calculations (Table 1) were identified using the FindCore2

algorithm (Snyder et al. 2014; Tejero et al. 2013).

Results

ASDP results for 10 blinded CASD–NMR datasets,

each with raw and refined NOESY peak lists

The ASDP protocols used for the CASD–NMR-2013

experiments are summarized in Fig. 1. The performance of

ASDP with ten blind datasets, using both raw and refined

NOESY peaks lists, are summarized in Table 2 and Fig. 2.

NOESY peak lists were assigned using ASDP, and the

structures were generated from these restraints using

CYANA. The results structures were then refined with CNS

in explicit water solvent (CNSw) (Brunger et al. 1998) or

with restrained Rosetta (Mao et al. 2014). The DP score

was calculated two ways. The value reported as the ‘‘DP

value’’ in Table 2 is based on interproton distances aver-

aged across the ensemble of 20 conformers, which is the

conventional method of computing the DP score (Huang

et al. 2005, 2012). In addition, a \DP[ score was com-

puted by determining the DP score for each of the 20

models in the ensemble, and then averaging these values.

These are equivalent metrics, though the \DP[ score is

generally smaller than the DP score based on the average

distance. RMSD, DP, and \DP[ scores for structures

generated from the raw unrefined peak list (after noise

filtering) were computed by comparing models against

these same unrefined peak lists; the scores for structures

generated using manually-refined NOESY peak lists were

computed by comparing models against the corresponding

refined NOESY peak lists. The differences in RMSDs and

DP scores for raw (after noise filtering) and refined peak

lists are small, demonstrating that the peak editing methods

used in ASDP are robust in removing random noise from

these peak lists.

Impact of using DP scores for guiding model

selection when using unrefined NOESY peak lists

The DP score is a global measure of how well the model

of the structure fits to the NOESY peak and chemical

shift NMR data. Using the DP score for model selection

can guide the ASDP program to generate globally-opti-

mized models, and to utilize these models in its algo-

rithms to rule-in and rule-out additional NOESY cross

peak assignments. In particular, using the global DP

score to distinguish more accurate from less accurate

intermediate structures will reduce the use of inaccurate

intermediate structures for assigning NOESY cross

peaks. In order to assess this assumption, we also tested

the performance of ASDP without using DP scores for

intermediate model selection. The final DP,\DP[ , and

RMSD scores reported in Table 3 were calculated using

the unrefined (raw) NOESY peak lists after automatic

noise filtering using the preprocessing scripts of ASDP.

Models were generated with or without DP filtering of

intermediate structures, using ASDP for NOESY cross

peak assignment and restraint generation, and Cyana for

structure generation with the resulting restraints, with no

further energy refinement. In eight of ten cases, trajec-

tories using the DP score for model selection signifi-

cantly improved the accuracy of the resulting structures

(Table 3). These results demonstrate that the ASDP

algorithm incorporating the DP filtering of intermediate

structures is more robust to the noise peaks present in the

NOESY peak lists than the corresponding algorithm that

does not use the DP score for filtering out inaccurate

decoy structures.

ASDP

Disorder Filter

Noise 
Filter/ASDP

Refined Peak lists

Raw Peak lists

Restrained Rose�a 
Refinement

Structures
(Submi�ed to CASD-NMR) 

Restraints 
(Submi�ed to CASD-NMR) 

CNS/w Refinement

Fig. 1 The ASDP protocols used for the CASD–NMR experiments.

Unrefined (raw) peak lists were filtered by both a Disorder Filter and a

Noise Filter, followed by ASDP run together with dihedral angle

restraints from Talos? (Shen et al. 2009). For refined peak lists, no

filters were applied to the peak lists. All structures were energy

refined using either CNSw (Brunger et al. 1998) or restrained Rosetta

refinement (Mao et al. 2014). These resulting restraints and structures

were submitted to the CASD-NMR server
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Impact of restrained CNS or Rosetta energy

refinement

In this work, ASDP used Cyana structure generation

methods for rapid calculations of models from restraints

generated by ASDP, followed by restrained energy opti-

mization using CNSw in explicit solvent or using Rosetta.

ASDP used CNSw for restrained energy refinement on eight

NMR data sets for four targets released in this cycle of

CASD–NMR. During the CASD–NMR experiments, (Mao

et al. 2014) developed a new restrained Rosetta refinement

tool (Mao et al. 2014). Therefore, we replaced CNSw

refinement with Rosetta refinement for the remaining 12

data sets provided for 6 targets (Table 2). Restrained

CNSw or Rosetta energy refinement generally improved

the RMSD and DP scores. This is illustrated by comparing

the DP, \DP[ and RMSD scores for the energy-refined

structures generated using raw NOESY peak lists (Table 2)

with the corresponding scores in Table 3 for structures

generated using the same NOESY peak list data and pro-

tocols excluding energy refinement (i.e. ‘‘Target Func-

tion ? DP’’ protocol of Table 3). For 9 of the 20 peak lists,

we carried out both CNSw and restrained Rosetta energy

refinement. Except for the refined peak list of HR8254A

HR2876B HR2876C HR5460A HR6430A HR6470A 

HR8254A OR135 OR36 StT322 YR313A 

Fig. 2 Superimposed diagrams for manually-refined reference struc-

tures deposited in PDB (red), generated by ASDP using raw peak lists

(blue), and generated by ASDP using refined peak lists (green) for all

ten CASD–NMR targets. Flexible or disordered regions excluded

from RMSD calculations are shown in gray

Table 3 Improvement

provided by combining target

function and DP scores for

model selection with filtered

raw peak listsa

Name Target function only Target function ? DP

DP \DP[ RMSD (Å) DP \DP[ RMSD (Å)

HR2876Braw 0.799 0.775 1.26 0.802 0.780 1.44

HR2876Craw 0.698 0.669 1.74 0.680 0.653 2.09

HR5460Araw 0.702 0.640 3.88 0.741 0.684 2.05

HR6430Araw 0.843 0.810 1.78 0.860 0.831 1.46

HR6470Araw 0.872 0.779 1.88 0.882 0.811 1.34

HR8254Araw 0.774 0.672 2.90 0.802 0.721 2.25

OR135raw 0.732 0.675 2.07 0.757 0.739 1.21

OR36raw 0.749 0.708 2.60 0.761 0.729 1.91

StT322raw 0.624 0.518 2.23 0.629 0.544 1.75

YR313Araw 0.643 0.596 1.37 0.655 0.598 1.34

a Structures were assessed prior to energy refinement
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(discussed below), restrained Rosetta refinement generated

models with either similar or smaller RMSD and higher DP

scores than CNSw refinement, relative to the manually-

refined reference structure (data not shown).

Restrained Rosetta refinement provides better

sampling of the conformational space consistent

with NMR data

We also compared the backbone RMSD within the

ensemble for targets before and after energy refinement.

Figure 3 shows superimposed ribbon diagrams using dif-

ferent regions for three ensembles of target HR8254A:

PDB ID 2M2E: DP = 0.827, \DP[= 0.752; ASDP

structures before Rosetta refinement: DP = 0.802,

\DP[= 0.721; and ASDP structures after Rosetta

refinement : DP = 0.798, \DP[= 0.735. The refined

peak lists were used for these ASDP structure calculations.

These ensembles have similar DP scores before and after

Rosetta refinement; i.e. they are equally good fits to the

NMR data. However, superimpositions show that helix-3

of target HR8254A has a wider range of conformations

relative to the first two helices in the restrained-Rosetta

refined structures. The similar DP scores between these two

ASDP ensembles demonstrate that for this particular target

the Rosetta refinement provides a broader sampling of the

distribution of conformations that are equally consistent

with the NOESY peak lists. RDC data was not available for

target HR8254A, but would be helpful to resolve the

uncertainty of the helix-3 tilt angle. We also carried out

CNSw refinement for the models generated with the man-

ually-refined NOESY peak list. The RMSD for the CNSw-

refined structure was 1.48 Å, DP = 0.778,\DP[= 0.719.

The DP scores of CNSw refined structures are essentially

the same (slightly lower) than the DP scores of the Rosetta

refined structures, while the RMSD of the CNSw-refined

structures is much lower than the RMSD of the Rosetta

refined structures. For this target, restrained Rosetta

refinement provides broader sampling of the conforma-

tional space consistent with the NMR data, resulting in

larger RMSDs of the Rosetta models relative to the man-

ually-refined structure of HR8254A.

Assessment of NOESY peak filtering protocols

In this work, two protocols were used for automatic

NOESY peak list filtering, referred to as CASE A and

CASE B, as outlined in the ‘‘(Materials and methods)’’

section. Two targets (HR8254A and StT322) could not be

addressed with CASE A peak filtering, and required the

CASE B NOESY peak filtering. In the overall evaluation of

CASD–NMR 2013 (Rosato et al. accompanying paper in

this issue of JBNMR), these two targets were identified as

particularly challenging; only a few of the participants in

CASD–NMR 2013 provided any result at all using the raw

NOESY peak lists for HR8254A and StT322. For these two

Fig. 3 Superimposed ribbon

diagrams using different regions

for three HR8254A ensembles:

2M2E, ASDP structures before

Rosetta refinement, and ASDP

structures after Rosetta

refinement. These structures

were calculated using refined

peaks list. Left—Residues

557–568,576–583 and 589–617

were used for superimposition.

Right—Residues 550–599 were

used for superimposition. The

N- and C-termini of the

ensemble in the upper left are

labeled

J Biomol NMR (2015) 62:439–451 445

123



targets, ASDP was successful in obtaining reasonably

accurate structures using the CASE B filtering method.

However, this rough filtering method appears to also

remove some weak real peaks, which if preserved could

improve the accuracy of ASDP structures.

In order to assess the robustness of the two peak filtering

methods protocols (i.e. CASE A and CASE B), we calcu-

lated RPF scores for all 10 CASD–NMR reference struc-

tures (down loaded from the PDB) against (1) unfiltered

raw NOESY peak lists, (2) raw NOESY peak lists pro-

cessed using the ASDP filtering protocols, and (3) the

manually-refined NOESY peak lists (Table 4). This study

demonstrates that, as expected, the DP scores for the ref-

erence structures calculated with the manually-refined

NOESY peak lists are all[0.73; the reference structures fit

well to these refined NOESY peak lists. Only two of the

raw NOESY peak list data sets (HR6430A, DP = 0.857

and HR6470A, DP = 0.849) have DP scores [0.73.

Indeed, based on the protocol CASE A, no filtering was

required for the NOESY peak lists of these two targets. For

the NOESY peak lists of six targets filtered using the

protocol CASE A, five out of six have DP scores against

the reference structures[0.73. This analysis, demonstrates

that NOESY peak filtering protocol CASE A can generally

generate good quality NOESY peak lists. However, for

targets HR8254A and StT322, which could not be filtered

using protocol CASE A, the DP scores of the reference

structure against NOESY peak lists filtered with protocol

CASE B are 0.736 and 0.553, respectively, indicating that

these NOESY peak lists filtered with protocol CASE B

could potentially be improved. Indeed, while both auto-

mated NOESY peak list filtering protocols CASE A and

CASE B provide good quality NMR structures (Table 1),

comparisons of DP scores for the reference structures

against (1) automatically filtered NOESY peak lists and (2)

manually-refined NOESY peak lists (Table 4) suggests that

these data sets will be useful for developing improved

NOESY peak list filtering algorithms.

Effects of simulated errors in resonance assignments

The resonance assignment table may contain some degree

of incomplete and/or incorrect chemical shift assignments.

Though rare, swapped or combined chemical shift

assignments also can happen. Zhang et al. (Zhang, in

preparation) have systematically simulated various input

errors in the resonance assignment tables and tested the

robustness of AutoNOE (Zhang et al. 2014), Cyana (Her-

rmann et al. 2002) and ASDP (Huang et al. 2005, 2006) to

such errors. In these sensitivity tests, various random

errors in the input resonance assignment table were sim-

ulated (Zhang et al., in preparation), including cases where

(1) chemical shift assignments were combined, (2) chem-

ical shift assignments were incomplete, and (3) chemical

shift assignments were swapped (see Fig. 4 legend for

details).

ASDP results for the OR135 data set from CASD–NMR-

2013 using these simulated inaccurate chemical shift data

are summarized in Fig. 4 (top panel). ASDP was also tested

using two additional datasets (HR5537A and PfR193)

(Fig. 4, middle and lower panels). In these tests, RMSD

results are relative to corresponding X-ray crystal reference

structures, including 2LN3 for OR135 (83 a.a, alpha–beta

fold), 2KL6 for PfR193A (114 a.a, beta fold), and 2KK1

for HR5537A (135 a.a, alpha fold).

ASDP utilizes a topology-based algorithm to build sec-

ondary structures including anti-parallel and parallel beta-

sheets from the unassigned back-bone NOEs, and Ca and

Table 4 RPF results for

reference PDB structures with

raw, filtered, and refined

NOESY peak lists

Name Raw Raw with noise filter Manual

Recall Precision DP Recall Precision DP Recall Precision DP

HR2876Ba 0.645 0.940 0.590 0.862 0.875 0.787 0.989 0.963 0.919

HR2876Ca 0.737 0.951 0.645 0.802 0.904 0.707 0.959 0.976 0.891

HR5460Aa 0.680 0.884 0.592 0.859 0.840 0.736 0.965 0.956 0.860

HR6430Ab 0.958 0.955 0.857 0.958 0.955 0.857 0.986 0.973 0.932

HR6470Ab 0.975 0.934 0.849 0.975 0.934 0.849 0.993 0.960 0.898

HR8254Ac 0.434 0.972 0.394 0.901 0.849 0.736 0.965 0.936 0.827

OR135a 0.848 0.931 0.721 0.926 0.871 0.743 0.971 0.972 0.889

OR36a 0.706 0.911 0.579 0.898 0.853 0.733 0.990 0.966 0.904

StT322c 0.454 0.894 0.325 0.858 0.754 0.553 0.963 0.840 0.748

YR313Aa 0.627 0.913 0.456 0.832 0.857 0.642 0.988 0.947 0.848

a The NOESY peak intensity filtering used protocol CASE A
b No NOESY peak intensity filtering was required
c The NOESY peak intensity filtering could not use protocol CASE A and instead used protocol CASE B
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Cb resonance assignments in the first cycle before building

any 3D structural model. This approach makes it less

sensitive against errors in side-chain resonance assign-

ments for beta only (PfR193) and beta-alpha (OR135)

proteins, than for all-helical proteins (HR5537A; Fig. 4);

all-helical proteins are more likely to be influenced by

missing or scrambled assignments of side chains than beta

and beta-alpha proteins. In contrast, for beta-sheet con-

taining proteins, tertiary structure is determined to a large

extent by NOEs involving correct backbone proton

assignments. Detailed comparison of the performance of

ASDP with other NOESY assignments programs will be

presented elsewhere (Zhang et al. in preparation).

Impact of resonance assignment errors on DP scores

DP scores (Huang et al. 2005, 2012) were calculated for all

the models generated with ASDP for data sets with simu-

lated random resonance assignment errors (Fig. 5). As in

previous work (Huang et al. 2005, 2012), a strong corre-

lation is observed between DP scores and structural accu-

racy measured by RMSD to reference structures (Fig. 5).

We have previously demonstrated that a DP cutoff of

*0.73 generally separates good from poor structures

(Huang et al. 2005, 2012). The data in Fig. 5 demonstrate

that even with incorrect chemical shift assignments, the DP

cut off of [*0.73 corresponds to a structural accuracy

OR135

PfR193

HR5537A

RM
SD

(Å
) 

RM
SD

(Å
) 

RM
SD

( Å
) 

Fig. 4 The RMSD statistics of structures generated with ASDP for

three data sets with various types of simulated chemical shift errors.

The class of simulation is described along the X-axis. Six sets of

random errors were simulated for each class. The boxed dots were

outliers used to test the two-run ASDP method. The reference

structures for RMSD calculations are 2LN3 for OR135 (83 residues,

alpha–beta fold), 2KL6 for PfR193A (114 residues, beta fold), and

2KK1 for HR5537A (135 residues, alpha fold). Secondary structure

regions annotated in the X-ray PDB files were used to compute

superimpositions for RMSD calculations. Random chemical shift

assignment combination includes combining the methyl carbon and

proton resonances of Leu, Ile and Val by 10 and 30 % (com-

bine_methyl_0.1, combine_methyl_0.3) and combining diastereo

specifically assigned protons by 10 and 30 % (combine_stereo_0.1,

combine_stereo_0.3). Random resonance assignment incompleteness

includes methyl groups removed by 10 and 30 % (miss_methyl_0.1,

miss_methyl_0.3), protons removed by 10 and 30 % (miss_pro-

ton_0.1, miss_proton_0.3), and all side chain atoms removed by 10

and 30 % (miss_sidechain_0.1, miss_sidechain_0.3). Random chem-

ical shift assignment swapping includes swapping between similar

carbon assignments (i.e. with the same atom names) by 10 and 30 %

(swap_carbon_0.1 and swap_carbon_0.3), swapping between carbon-

proton coupled assignments by six and nine pairs (swap_coupled_6

and swap_coupled_9), swapping between methyl group assignments

by two and three pairs (swap_methyl_2, swap_methyl_3), and

swapping between the whole side-chain atom assignments for the

same residue type by two and three pairs (swap_sidechain_2,

swap_sidechain_3). These simulations of incomplete and/or incorrect

NMR assignment tables were generated by Z. Zhang and O. Lange

(Zhang et al., manuscript in preparation)
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RMSD\*2 Å. Accordingly, even when provided with

inaccurate and/or incomplete resonance assignment data,

highly inaccurate structures can be identified by the DP

score, providing critical feed back that can be used to

improve the quality of the input data.

Effect of automated editing the input peak lists

In the first cycle of NOESY peak assignments, ASDP will

uniquely assign only a very small fraction of long-range

NOEs. Chemical shift assignment errors, like the simulated

resonance assignment errors used in this study, can result in

a small number of incorrect long-range NOE assignments,

and very inaccurate structure can sometimes be generated.

Indeed, for several of the simulated incorrect resonance

assignment data sets, particularly for the all-helical

HR5537A target, ASDP generated some highly inaccurate

structures, with backbone RMSDs relative to the corre-

sponding X-ray crystal structure [5 Å (Fig. 4. bottom

panel). Fortunately, these erroneous restraints, which are

mostly generated in the initial stages of ASDP analysis, can

be detected and removed from iterative NOE analysis,

because they tend to be strongly violated ([10 Å) in the

final structures.

In our experience, the most severe incorrect NOESY

cross peak assignments often result in interproton distance

restraint violations greater than [10 Å in the final struc-

ture. The corresponding NOESY cross peaks can thus be

identified and removed for a second independent ASDP

run. Using the resulting structures to clean up the initial set

of distance restraints provides more accurate structures for

subsequent restrained-energy optimization.

Driven by these data and the challenge of the CASD–

NMR project, a new module was implemented in ASDP to

automatically detect erroneous restraints resulting from

inaccurate resonance assignments. This ‘‘two-run ASDP

protocol’’ is illustrated in Fig. 6. ‘‘Noise NOESY cross

peaks’’ are defined as all NOESY cross peaks for which the

corresponding restraint is violated by [10 Å in all 20

conformers from the final cycle of first run. These ‘‘noise’’

NOESY cross peaks are removed for a second run of

ASDP. The DP scores of the two individual runs are

compared and the structures from the run with higher DP

score are selected as the final ASDP results for further

restrained Rosetta refinement.

To test this ‘‘two run protocol’’, we selected 13 outlier

structures generated using the simulated inaccurate chem-

ical shift list (marked as boxed dots in Fig. 4 HR5537A

panel). As demonstrated in the results presented in Fig. 7,

the two-run ASDP protocol resulted in more accurate

structures, with smaller RMSDs compared to X-ray crystal

reference structures, for 10 of the 13 outliers. The protocol

allowed for identification and exclusion of NOESY cross

peaks involving misassigned resonances, providing infor-

mation which could be potentially used to correct these

resonance assignments. For the remaining three outliers

tested, the assignment inaccuracy was not sufficient to

generate consistent violations of [10 Å in the final struc-

ture, and other methods to identify these kinds of errors in

resonance assignments still need to be developed. In any

case, it is clearly important to identify potential errors in

NOESY peak lists and resonance assignments, and to

Fig. 5 The correlation between DP scores and backbone RMSD for

datasets with various simulated chemical shift errors. The value

DP = 0.73 is shown as vertical dashed line. Blue—OR135 results.

Green—PfR193 results. Red—HR5537A results

ADSP/
Talos,Cyana

Remove “noise 
NOESY peaks”

Pick the structures with higher DP scores as 
final structures and then refined by 
restrained Rose�a Refinement

run 
=2?

Yes

No

(set run=1)

(run = 2)

Fig. 6 The two-run ASDP flow chart. The NOE peaks that are

inconsistent with the protein structure models from ASDP are

identified after run 1. These ‘‘noise’’ data are then removed from

the input data, and ASDP calculations are repeated. The DP scores of

structures from run 1 and run 2 are compared, and the ones with

higher DP scores are picked as the final structures for further

restrained Rosetta refinement
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prepare high quality input data in order to generate high-

quality structures.

Discussion

We have improved the robustness and accuracy of auto-

mated NMR structure determination with AutoStructure by

(1) using a global optimization DP score to guide the

iterative NOESY cross peak assignment process, (2)

identifying input noise and automatically filtering input

NOESY peak lists, and (3) identifying incorrect NOESY

cross peak assignments caused by errors in resonance

assignments and excluding these from the structure deter-

mination process. This improved version of the program

has been renamed ASDP.

A DP-score-based noise filter was implemented to

identify weak noise peaks in the raw NOESY peak lists.

We have tested this ASDP ‘‘peak intensity filter’’ with

CASD–NMR blinded NOESY data sets, using all ten raw

peak lists. The small differences in RMSDs and DP scores

of structures generated from ‘‘raw’’ NOESY peak lists

processed with this noise filter compared with structures

generated using manually-refined NOESY peak lists

demonstrates that the peak editing methods used by ASDP

are robust in eliminating noise in these peak lists, thus

providing accurate structures in a fully automated analysis.

We have previously reported a high correlation between

accuracy (i.e. RMSD to the manually-refined structure) and

DP scores in comparing various kinds of decoy structures

with manually-refined NOESY peak lists (Huang et al.

2005, 2012). In this work, we also observe good correlation

between structural accuracy and DP scores (or \DP[
scores) when using raw peak lists processed automatically

with the preprocessing scripts of ASDP. These results

demonstrate the robustness of the DP score for structure

validation, even with different qualities of NOESY peak

list data. The results further suggest that the DP score

measurement can be potentially applied directly to NOESY

spectra (FIDs), followed by automated peak picking and

noise filtering, as described in this study.

Using the data in Table 4, we also assessed the degree to

which our NOESY peak filtering protocols, CASE A and

CASE B, may remove real peaks from the NOESY peak

list. The Recall score of the RPF_DP metric is a measure of

the percentage of peaks in the NOESY peak list that are

consistent with the protein structure model. Noise peaks are

generally not consistent with the reference structure, and

their presence in the peak list will reduce the Recall score

measured against the reference structure. The Precision

score is a measure of the percentage of short distances in

the protein structure model which are not represented in the

NOESY peak list. If real peaks are eliminated from the

NOESY peak list by a filtering process, this will reduce the
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1Fig. 7 Comparison of one-run

and two-run ASDP calculations

for outlier structures produced

with simulated chemical shift

errors. Blue—DP scores and

backbone RMSDs for one-run

ASDP calculations. Red—DP

scores and backbone RMSDs

for two-run ASDP calculations
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precision score, measured against the reference structure.

For the six data sets processed with CASE A, the peak

intensity filtering significantly increased the Recall,

demonstrating removal of noise peaks. The corresponding

Precision scores decreased slightly (or not at all), demon-

strating good preservation of real peaks. However, both the

Recall and Precision scores are generally higher for the

manually-refined NOESY peak lists than the peak lists

filtered using the CASE A method. For the two data sets

which could not be processed with CASE A, and were

processed with CASE B (HR8254A and StT322), the

CASE B filtering significantly increased the Recall scores,

from 0.43–0.45 to 0.86–0.90 (Table 4), demonstrating

significant reduction in noise peaks. However, the corre-

sponding Precision scores also drop significantly (from

0.89–0.97 to 0.75–0.85). The manually-refined NOESY

peak lists have significantly higher Recall and Precision

scores for these two reference structures. The CASE B

filtering successfully removes noise peaks, but also reduces

the number of real peaks in the NOESY peak list. These

CASD-2013 data sets provide good test cases for the

development of more robust NOESY peak filtering tools.

Protein NMR structure determination is essentially

restraint-based modeling, an area of active development in

the protein structure prediction community (Monastyrskyy

et al. 2014; Moult et al. 2014). Modeling methods are

broadly categorized in two broad classes: ‘‘knowledge-

based’’ methods which rely on sampling from protein

conformations observed in experimental protein structures

available in the Protein Data Bank, and ‘‘physics-based

methods’’, which utilize empirical (or even ab initio force)

fields, in molecular mechanics calculations. These dis-

tinctions are not mutually-exclusive, as most knowledge-

based modeling methods also utilize physics-based force

fields, and physics-based methods also utilize information

from small molecule, or even protein structure data bases.

Comparisons of this spectrum of methods for protein NMR

structure refinement is an active area of research (Mao

et al. 2014; Tejero et al. 2013).

In this work, we compared a largely knowledge-based

method, restrained-refinement of CASD–NMR structures

generated with Rosetta utilizing polypeptide fragments

generated from protein structures available in the PDB,

with a physics-based method, restrained refinement with

CNSw, using simulated annealing of short molecular

dynamics trajectories in explicit solvent. Restrained CNSw

or Rosetta energy refinement generally improves the

RMSD (accuracy to the manually-refined structure) and DP

(fit of the model to the NOESY and chemical shift

assignment data) scores. Restrained Rosetta energy

refinement generally generated models with smaller RMSD

relative to the manually-refined reference structure, and

higher DP scores relative to NOESY peak lists, compared

with CNSw. Similar improved performance of restrained

Rosetta compared with CNSw energy refinement has been

reported in our previous papers using NMR—X-ray pairs

available for the same protein targets (Mao et al. 2014;

Tejero et al. 2013). However, this does not demonstrate

that knowledge-based methods are generally superior to

physics-based methods for protein NMR structure refine-

ment, as this field is still evolving, and improvements in

protocols for both physics-based and knowledge-based

protein structure modeling with NMR data can be antici-

pated in the coming years.

We also tested the robustness of ASDP to simulated

errors in resonance assignments. Considering the underly-

ing algorithms of ASDP, all-helical proteins are more likely

to be influenced by missing or scrambled assignments of

side chains than beta and alpha–beta proteins. However,

the new ‘‘two-run ASDP protocol’’ can identify structural

inconsistencies caused by some inaccuracies in the NMR

resonance assignments. While further development of

methods to detect incorrect resonance assignments are

needed, these results demonstrate that such two-run pro-

tocols can identify some of the kinds of errors that result

from misassignment of NMR resonances.

ASDP exhibited reliable performance on all of the 10

CASD–NMR targets released, using both raw and manu-

ally-refined peak lists. Other members of the Montelione

laboratory contributed to the CASD–NMR project by

generously providing the NOESY data sets and manually-

refined reference structures for eight of these CASD–NMR

targets; i.e. all protein targets except HR8254A and

StT322. In order to ensure blind tests of the ASDP protocol,

a special data handling process was set up in the Monte-

lione laboratory, so that information about NOESY peak

list data and the manually-refined reference structures were

not shared by the subgroup doing the blinded, fully-auto-

mated ASDP calculations, until the reference structures

were released by the CASD–NMR-2013 organizers. As

these ASDP calculations were carried out in an automated

fashion, they can be repeated using the CASD–NMR-2013

data and the released ASDP ver 1.0 software.

It is clearly important to identify potential errors in

NOESY peak lists and resonance assignment table and to

prepare high quality input data in order to generate high

quality structures. Meanwhile, it is also useful to develop

automatic tools, which help users to identify potential noise

peaks in NOESY spectra and/or incorrect resonance

assignments. For example, a unique feature of DP score is

that it can detect such errors in the input data by studying

the false positive and FN error reports, which direct the

user to the specific NOESY peaks which are inconsistent

with protein structure models. These features of the DP

analysis provide feedback to the user that is useful to

improve the quality of the input data (Huang et al. 2005,
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2012). Additional user-friendly tools are under develop-

ment to further utilize the false positive and FN error

reports generated by NMR DP analysis.

Software availability

ASDP v1.0 and associated scripts are available at http://

www-nmr.cabm.rutgers.edu/NMRsoftware/asdp/Home.html.

The C??/perl source codes are also available at the same

site.
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Guntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle

dynamics for NMR structure calculation with the new program

DYANA. J Mol Biol 273:283–298
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